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DESIGN AND DEVELOPMENT OF LATERAL FLIGHT DIRECTOR

Kim E. Kudlinski
William A. Ragsdale

SUMMARY

The current control law used for the flight director in the Boeing 737 simulator is inadequate with large
localizer deviations near the middle marker. Eight different control laws are investigated. A heuristic method is
used to design control laws that meet specific performance criteria. The design of each is described in detail.
Several tests were performed and compared with the current control law for the flight director. The goal was to
design a control law for the flight director that can be used with large localizer deviations near the middle marker,
which could be caused by winds or wake turbulence, without increasing its level of complexity.

INTRODUCTION

There are several navigation systems to aid a pilot in landing an aircraft. Commercial aircraft normally use the
instrument landing system (ILS) to make an approach and land. ILS is limited to a ceiling of 200 ft and visibility of
half a mile. The ILS has been the international standard for the past 40 years. The pilot has access to several types
of instruments to help him navigate to the runway. The instrument landing system (ILS) approach provides the
pilot vertical guidance as well as horizontal guidance to the runway. The ILS approach will guide the pilot down to
his landing site (runway).

The ILS is composed of position information, range information, and visual information (figure 1). Two highly
directional transmitting systems provide the position information: the localizer (LOC) and the glideslope (GS). The
LOC provides the pilot information relating the horizontal position to the runway. The signal is transmitted from an

Localizer Runway Length
Transmitter 1,000 ft 4 ?

"\, Touchdown

Glide Slope mgjrilsr
Transmitter

Outer
Marker

Figure 1 Ground Transmitter Sub-System



antenna located on the runway centerline at the far end, typically 10,000 feet from the approach end of the landing
runway. The signal is usable from a distance of at least 20 nautical miles (nm). Reliable indications of being off
course to the left or right can be received 35° cither side of the runway centerline, but the instrument only indicates
+2.5° The GS provides the pilot vertical information position to the runway. The antenna site is located 750 to
1,250 feet from the approach end of the landing runway and is offset 250 to 650 feet from the runway centerline.
The beam transmitted is 1.4° wide and is angled upward at approximately three degrees to intercept the middle
marker at 200 feet and the outer marker at about 1,400 feet above the runway elevation. The GS signal is normally
usable to a distance of at least 10 nm from the antenna site. Marker beacons can provide the range information for
the ILS. Normally an ILS has two marker beacons: the outer marker (OM) and the middle marker (MM). The
marker beacon is a signal transmitted from an antenna array, which produces an elliptical pattern 2,400 feet long by
4,200 feet wide at an altitude of 1,000 feet above the antenna site. The signal is 3 watts or less in power and
transmitted on a frequency of 75 MHz. The OM is located 4 to 7 nm from the runway threshold. The MM is
located 3,500 feet from the runway threshold where the GS is 200 feet above the touchdown zone elevation. The
visual information for the ILS consists of approach lights, touchdown zone lights, runway centerline lights, and
runway lights. The LOC and GS signals are received by the airplane instruments and used by the computer to
calculate the output of the flight director.



The flight director in figure 2 is an example of a digital display in the simulator here at NASA Langley in the
Simulation Systems Branch. On the right is the GS and it indicates the plane is below the glideslope and on the
bottom is the LOC and it indicates the plane is right of centerline. However the flight director reveals the plane
needs to bank right.

Figure 2 Flight Director

To prepare for landing the pilot must first tune all necessary navigation radios to receive the LOC and GS
signals. The radar controller will guide the pilot by issuing vectors (heading changes) until the aircraft is on a
heading to intercept the LOC at approximately a 45° angle before reaching the outer marker. Once the pilot is
within the 2.5 angle the flight director will guide the pilot by indicating what angle to bank the plane to achieve the
desired location, centerline. The flight director will adjust to compensate for the effect of wind. If the flight director
moves left, the pilot will bank to the left. If the flight director moves to the right, the pilot will bank to the right.
The flight director will guide the pilot so that the plane will arrive at a heading that negates the effect of wind and



the plane will fly on the centerline. Once the pilot crosses the middle marker, to continue the descent and land, the
pilot must see the runway or lights associated with the approach. The plane usually will touchdown by 1200 feet
from the threshold of the runway.

PROBLEM DESCRIPTION

Landing an aircraft in high winds, rough air or at night requires highly accurate information on the position and
angle of the aircraft with respect to the runway. The flight director can provide the pilot information to guide the
aircraft to safety. With a flight director, the pilot simply moves the control wheel left or right toward the flight
director needle to keep it centered. The flight director makes flight in bad weather and winds easier and safer to fly
and reduces complexity for the pilot, but requires a control law in a computer to calculate the proper roll
commands.

The lateral flight director currently used for the NASA Langley Boeing 737 simulation uses proportional
feedback from the localizer and heading, and a proportional, integral, derivative control law for the roll angle
command and roll feedback. This design has an overdamped response, and as a result is very slow to capture the
centerline. It does not provide adequate guidance if the aircraft is very far off the centerline at the middle marker.
In an emergency situation, if a gust of wind were to knock the plane off course at the middle marker the current
flight director could not provide efficient guidance to land the plane safely.

The objective of this study is to design a lateral flight director for a commercial Boeing 737 that will calculate
roll angle commands to capture and track the runway centerline, using methods different from the control law now
in use. The new flight director should be able to guide a plane to a safe landing in normal circumstances, as the
current flight director does, and in the stress case, when the localizer is pegged at the middle marker. Thedifferent
candidate control laws that are designed and tested are summarized in the following table:

Control Law Feedback
LOC Deviation Heading Roll
1 P None P
2 PI None P
3 PD None P
4 PID None P
5 P P P Key
6 PI P P P - Proportional
7 PD P P I —Integrator
3 PID P P D — Detrivative
Current Law P P PID

Table 1 Control Laws



Since, there are certain criteria to meet in order to land a commercial airline, several experiments have been
performed to test the most common and not so common landings. The test cases include:

1 2 3 4 5 6
Initial Standard Standard Standard Procedure Baseleg Pegged
Conditions Crosswind Crosswind Turn No wind at  Middle

from left from right Marker
x - location || -40,000 -40,000 -40,000 -60,000 -100,000 -3020
y - location || 1,000 1,000 1,000 20,000 60,000 550
heading 0 0 0 45 90 10
wind 0 30 30 0 0 0
velocity, fps
wind 0 -90 90 0 0 0
direction
Table 2 Test Cases

Note: X and Y location are based on an end of runway coordinate system, Page 6. The y location is positive if
approach is from the right and negative if approach is from left.

PROBLEM SETUP: REQUIREMENTS AND LIMITATIONS

The information available consists of the localizer, which indicates the angular deviation from the runway
centerline. However, it is limited to +/-2.5°. Any localizer deviation error beyond this, the needle is limited to
maximum of 2.5° within a reception range of 35° and approximately 20 nm. The system becomes more sensitive as
the airplane nears the transmitter. The reason is that a given lateral distance off the beam centerline corresponds to
a larger error angle as the transmitter is approached. Figure 3 depicts the general lateral guidance geometry.

For this study, the outer marker (OM) beacon is placed at 36,000 ft from the runway, about 6 nautical miles.
The middle marker (MM) beacon is placed at 3,000 ft from the runway, about 0.5 nautical miles. These marker
beacons send signals, flash lights and make audio tones for a few seconds, which the aircraft picks up as it flies over
the markers,

The pilot knows the aircraft heading and bank angle from the basic flight instruments. Roll angle feedback is
obtained from the attitude indicator. Heading is obtained from the compass on the HSI. The runway heading and
localizer transmitter frequencies are known from approach charts. The localizer needle shows the angular deviation
(not distance) from the runway centerline. The pilot controls the aircraft by moving a control wheel that determines
the roll rate. The roll (bank) angle and the speed of the aircraft determine the rate of change of heading. The
aircraft heading may or may not be in the direction that the plane is moving, depending on the effects of winds.
For the analysis, it is assumed that the pilot will roll to follow the flight director. From the instruments in the plane
the flight director can use the heading as input to the controller, if needed.

The flight director should not command large angles or rates. Typical limits are 25° of bank, and a roll rate of
10° per second. The ailerons, movable hinged sections on the wing of an airplane for controlling rolling



movements, have a maximum deflection of 20° and produce a roll rate of about 12° per second in the landing
configuration.

The following assumptions and conditions will apply for this study. The aircraft will fly at a constant airspeed,
velocity relative to the air, of 220 feet per second or 130 knots. This is normal approach speed for a Boeing 737. It
is assumed that the aircraft makes coordinated turns. The aircraft performs a coordinated turn by banking (rolling
the wings) and moves in the direction it is pointing relative to the airmass. Airmass is a large body of air having
virtually uniform conditions of temperature and moisture in a horizontal cross section, but not the ground. Winds
affect the motion of the aircraft relative to the ground.

Since this study is only concerned with lateral guidance, the aircraft is assumed to follow the glideslope. The
glideslope is generated by a transmitter, which tells the pilot if the aircraft is higher or lower than it should be
during the approach. Some ILS’s have a distance measurement equipment (DME) transmitter collocated at the
localizer transmitter which provides the distance of the aircraft from the localizer. For this study a DME will not be
used.

North

Aerror)
Y -Wier

Localizer

Lateral Beam Wiet =

runway
heading

Beamwidth

Figure 3 General Lateral Guidance Geometry

The problem begins with the plane heading roughly toward the outer marker. In real life the air traffic
controller would tell the pilot which direction to fly. The angle the airplane intercepts the localizer beam is between

190°, the preferred intercept angle (W-Wyref) £45° off centerline. Figure 3 displays a -30° approach. If the aircraft is
coming in at an angle of more than £90° a procedure turn (figure 4) is done so that the pilot approaches the
centerline at an angle of £45°.

Figure 4 Procedure Turn



It is necessary to reach (‘capture’) the centerline near the outer marker in a reasonable time. This depends on
the speed and initial heading of the aircraft. (The approach and landing are usually flown at a nearly constant speed,
but that speed is different for different aircraft) This problem would be exactly the same for other aircraft except
for the speed during approach.

Once the plane reaches the centerline it should not cross it more than once. That is, an initial overshoot is
acceptable, but not significant oscillations. Once the aircraft crosses the centerline the localizer deviation should not
exceed about 0.5°. A 0.5° overshoot corresponds to a 20% overshoot or a damping ratio about 0.5. The aircraft
should be flying along the runway centerline (‘tracking’) well before reaching the middle marker.

At touchdown the aircraft should be flying neatly wings level and close enough to the centerline that the wheels
are on the runway. A typical runway is 150 feet wide, and typical airliner’s wheels are about 50 feet apart. Thus the
aircraft must be within 50 feet of the centerline.

Once the requirements and limitations for landing are set the next step is to model the runway and the airplane
dynamics. Figure 5 displays the runway coordinate system and figure 6 displays the airplane dynamics including the
assumed pilot reactions. To simplify the model for analysis purposes, latitude and longitude are not used in this
problem, instead the runway x, y coordinate system is used. The centerline of runway is y = 0 and the beginning of
the runway is x = 0. To the right of the runway is y > 0, and to the left is y < 0. The outer marker is assumed to be
at x = -36,000, y = 0, and the localizer is at x = 10,000, y = 0, according to this coordinate system. The reference

00
Localizer
x|
-90° —_— y+,90°
(0,0) MM
Runway,
Threshold

oM ,T
Figure 5 Runway Coordinate System
heading angle is normally North, for simplicity it is set to equal the runway, Yeee = 0. The plane is heading within

+180 degrees relative to the centerline. The pilot does not have a true awareness of position, just if he is right or
left of centerline.
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DESIGN OF GAINS

Using the plant dynamics in figure 6, and adding a feedback from the roll angle, ¢, the inner loop can then be
analyzed to find the proportional gain Iy, figure 7. This gain will be used throughout the eight control laws. If the
K

¢

s+K¢

pilot lag is ignored for the analysis of the roll, then transfer function reduces to . If roll angle command,

emd, 18 25°, and the gain, K,, is 2, then the roll rate command, ¢ emd, Will be 50° per second. The roll rate is not
realistic for a commercial aircraft, therefore the gain needs to be held to a smaller value. A more realistic roll rate

command is 12.5° per second, which is achieved using the same roll angle command and cutting the gain to 0.5.

(P emd 1 ¢ err I<¢ (bcmd 1 ([Serr T (/) S_ ¢ max. ¢ L s ¢
O

1

Figure 7 Roll Control and Dynamics

This new roll rate exhibits a time constant of 2 seconds and will reach steady state roll angle in, (three times the time
constant), 6 seconds. When a roll angle command of 25° is given, the physical parameters for a commercial aircraft



allow the roll angle to be achieved within 1.5 to 5 seconds. It should not take a plane, once a roll command is
given more than 5 seconds to reach the roll angle; however, it should take at least 1.5 seconds. In order to simplify

the analysis and meet realistic aircraft reactions, let Iy, = 1. This implies that the unlimited roll rate command will
be when the roll command is 25°, and 1° when the roll command is 1°. The time constant is 1 second, and should
reach roll angle steady state at approximately 3 seconds for roll errors less than 10°. Note roll rate is limited to 10
degree per second, so the response is nonlinear for roll errors of more than 1(°.

CONTROL WITHOUT FEEDBACK FROM HEADING

To simplify analysis, assume ¢ md = ¢ , because the roll response is much quicker than the response of the
aircraft to get to the centerline. The linearized model with feedback from the localizer deviation is represented in
figure 8. Note in the model all three gains are represented.
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Figure 8 Flow Diagram for Analysis

From figure 8, using Mason’s gain formula the transfer function is:

i

g1 1 g1 1 g1 1
=—(d2r)V—A(r2d)+ K, = —(d2r)V —A(r2d) + K,s——(d2r)V — A(r2d)
Vs s PV s s Vs s

Y s
u

K g1 1 g1 1 g1 1
1+ ——(d2r)V-A@2d)+ K, ——(d2r)V—-A(r2d)+ K, ,s ——(d2r)V — A(r2d)
s Vs s PV s s Vs s

KgA K,gA K,gA

§3 + §2 T _ K, gAs* + K, gAs + K, gA
KgA K,gA K,gA s’ +K,gAs’ + K, gAs+K, gA
I+—+——5+ S
§ §

LAW 1: PROPORTTIONAL CONTROL

The first test case is proportional control, by setting K4 and Ki = 0, then the transfer function becomes

Y K,8A . . . . . .
— =—————. This system, with proportional control, is not stable. It is a second order system, with the
u

s°+K,gA



damping ratio equal to zero. The roots fall on cither the imaginary axis or the real axis with opposite roots. This
will create an oscillatory behavior. The aircraft would roll back and forth across the centerline and never line up.

LAW 2: PROPORTIONAL, INTEGRAL CONTROL

The second test case is proportional, integral control, by setting Kg = 0, the transfer function becomes

y K, gAs+ K, gA
u

= Using a root locus to display this third order system roots shows in figure 9 the

s°+K,gAs+ K gA’

system is unstable.
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Figure 9 Root Locus, with Positive K left, and Negative K right

LAW 3: PROPORTIONAL, DERIVATIVE CONTROL

The third test case is proportional, derivative control, by setting I = 0, the transfer function becomes
y K,gAs+ K, gA Ks+w’
u

= . This is a second order equation of the form
s° +K,gAs+ K gA E s +20w, s+

equation s° +2{w s+ ’. Let § = 0.707, because this has an overshoot of less than 5%, the quickest settling

with a characteristic

2
n

time, and the smallest integral error for a linear system with a step input. @, determines how long the aircraft takes
to line up with the centerline. A higher value of @, means a shorter oscillation period and lines up with the
centerline more quickly. At the outer marker, flying at a speed of 220 ft/sec, the aircraft is about 37,000 feet or 168
seconds from touchdown. At the middle marker the aircraft is about 4,000 feet or 18 seconds from touchdown. So
the most critical case for the gain determination is at the middle marker. This 18 seconds corresponds to the
maximum allowable ‘settling time’ t; of the system, the time it takes to correct 95% of an initial error. Settling time

3 3
is related to @, and G from the relationship, ¢, = E Solving for @, yields @, =——. With { = 0.707, and t, =
r

s

18 yields @, = 0.24. This is the maximum value of W, since the aircraft would have more time to respond, and a

10



smaller @, for any other case. Using @ = .24, the characteristic equation becomes => s> +.336s +.0576. This
0576 336

results in K, =———, 82 at the outer marker, and 23 at the middle marker, K, = _A , 480 at the outer marker,
&

and 136 at the middle marker. The simplest control law would be one with constant gains that work throughout the

approach from the outer marker to touchdown. Since the middle marker is most critical, let K, = 23 and K4 = 136.

The next step is to verify the response using the ‘standard’ test case to ensure the gains are in the right ballpark.

Figures 10 and 11 illustrate the standard approach test case, with no winds, heading is parallel to the runway, and

velocity of plane is 220 feet per second. The plane starts past the outer marker.
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Figure 10 Position of Aircraft with gains, K,=23,K=0,K;=137, Ky=none
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Figure 11 Localizer, Roll, and Roll Rate with gains, K,=23,K;=0,K;=137, Ky=none

The initial localizer error is about 1.15 degrees, and the response overshoots to 0.45 degrees. These gains
produce an overshoot of about .45/1.15 = 39%. The overshoot and osdllation is produced by the lag, of the pilot
and aircraft response, but also by the roll and roll rate limits and because distance to localizer changes making the
system more sensitive. This is too much oscillation so it might be better to increase the damping ratio to 1.0. Then
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®. = 0.17 and the characteristic equation is §°+.345+.0289 , which implies the gains at the middle marker are
0289 34

=—2=1LK, = A 137 . Looking at the standard test case shows this reduces the oscillation.

by gA

LAW 4: PROPORTIONAL, INTEGRAL, DERIVATIVE CONTROL

The fourth test case is proportional, integral, derivative control, the transfer function is as before,

y K,gAs* + K gAs+ K, gA
—= . If we let Kq = 137 and K, = 11, from the previous analysis, and let K; =
u s°+K,gAs* +K,gAs+ K, gA ‘ b previous analy

1, the pole-zero plot, figure 12, shows where the poles and zeros lie in the s-plane.
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Figure 12 Left, Pole Zero Plot with gains, K=11,K=1,K=136, K,=none,
Right, Root Locus, with K= .1,.2,.3,.4,.5and gains K=11,K=1,K,=136, K, =none

This indicates that a stable solution maybe found for the system. Using a root locus plot and letting K vary 0.1,

0.2,0.3, 0.4, and 0.5, figure 12 also shows that as K gets bigger the pole on the x-axis goes further out. If K = 0.1
the oscillations are reasonable in preliminary tests.
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CONTROL WITH FEEDBACK FROM HEADING

For this part of the problem there is an additional feedback from heading, Y. The next step is to analyze the
two inner feedback loops, roll and heading. The linearized model is represented in figure 13. Note in the control
used for heading feedback is proportional.

Wcmd Werr I<‘~|’ I{(D ¢ ? ¢ I<V l/./ ? l// 1 l//
O O
|
-1

Figure 13 Heading Control Logp

Using Mason’s gain analysis techniques produces the following transfer function:

K, K,K,
2 . K, K,K,
2
N N

a)2
2

This is a second order equation of the form
s*+20ws+w

> . From the previous analysis Ko = 1.
Given
K, = 5— = 0.146

v

Let £ = 1, then K,=1=1*2%0p = o =0.5

2 _ —
0] 025 =K,K. K, =» K, =1.71

Settling time is t;5=3/(1*0.5) = 6

0.25
Output to input becomes v = ——————— . This system has a one second lag, and no overshoot.

Vou s +s5+0.25

Placing this transfer function in the overall system for the final analysis results in the linearized model in figure 14.
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Figure 14 Flow diagram for Analysis, including Feedback from Heading, Yaw

The next step is to analyze the entire system. To simplify analysis, assume Y cma =Y , because the heading
response is much quicker than the response of the aircraft to get to the centerline. The linearized model with
feedback from the localizer deviation is represented in figure 14. Note in the model all three gains are represented.
From figure 14, using Mason’s gain formula the transfer function is:

K, 1 1 1
L(d2rV - A(r2d) + K, (d2r)V — A(r2d) + K, s(d2r)V ~ A(r2d)
M M M

Y _ s
¢ 1 1 1
1+—"(d2rV ~ A(r2d) + K ,(d2r)V — A(r2d) + K ,s(d2r)V — A(r2d)
N N N N
KvA KVA K\VA
2 Ty Tty K, VAs® + K VAs+ K VA
- KVA KJVA KVA  (1+K,\VA)s’ +K,VAs+KVA
1+——5+ S + 1
N

LAW 5: PROPORTIONAL CONTROL

The fifth test case is proportional control, by setting Kq and Ki = 0, the transfer function becomes
y K VA
— =———-——_ Proportional control is a first order system with a lag. If I use the previous criteria letting the
u s+KyVA

time constant be 6 due to the requirement to reach centerline in 18 seconds, then it follows K VA = 0167 , and at
the middle marker, K, =9.85. Now to do a preliminary test for the gains, K, =9.85 and K, = 1.7. The results
are displayed in figures 15 and 16.
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Figure 15 Position of Aircraft, K,=9.85,K=0,K,=0, Ky,=1.7
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Figure 16 Localizer, Roll, and Roll Rate with gains, K,=9.85,K=0,K=0, K,=1.7
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LAW 6: PROPORTIONAL, INTEGRAL CONTROL

The sixth test case is proportional, integral control, by setting Kq = 0, the transfer function becomes

y  K,VAs+KVA Ks+w;
== This is a second order equation of the form
u

s*+KVAs+KVA’

equation s? + 2w, s+ a)f . From the previous problem we have K, = 9.85. K,VA = 0.1667 = 2{®,. Solving
for @, with { = 0.707, yields @, = 0.1179 and with § = 1, yields @, = 0.0833. Using 0, = 0.1179, the characteristic

7 with a characteristic

n

s’ +20w, s+

VA

gains for preliminary testing, let K, = 9.85, K; = 0.8212, K4 = 0, and Ky, = 1.7, the results are displayed in figure
17.

equation is = s” +0.1667s+0.0139 . This results in K, = , 0.8212 at the middle marker. Using the

Localizer Deviation

2 T T T
1 - -
or ]
_1 1 1 1
0 50 Roll 100 150 200
40 T T T
20 Z\/\/\_,/_\ -
O -
20 ' 1 s 200
0 50 Roll Rate' 9 50
10 T T T
or ]
10 - : :
0 50 100 150 200
Time (sec)

Figure 17 Localizer, Roll, and Roll Rate with gains, K,=9.85,K=0.8,K,=0, K,=1.4

The integrator certainly introduces some oscillation. This is too much oscillation so it might be better to

increase the damping ratio to 1.0. Then @,= 0.0833 and the characteristic equation is s~ + 0.1667s + 0.0069 .
0.0069

This results in K, = , 0.4105 at the middle marker. This produces less oscillation, within acceptable limits.
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LAW 7: PROPORTIONAL, DERIVATIVE CONTROL

The seventh test case is proportional, derivative control, by setting K; = 0, the transfer function becomes

y K, VAs+ K VA
—= This is a first order system with a lag. In the previous analysis 6 was used, this time
u

(1+K,VA)s+K, VA
1+K,VA

let T= 6.5, then = 6.5. This value is chosen to prevent cancellation with the previous used value of 6.

»
0.08355=K,VA = K, =494, Testing the gains, K, = 9.85, Ka=5, and Ky, = 1.7, with the standard approach
test case produces the graph in figure 19, which appears to be acceptable.

Position of Aircraft

2500 . . . . .
2000} N .

15001 “~. _Localizer Beam Limits
1000} RN ]
500 Tt .
or _\_._ E

Y Location e
500 T -
-1000} et ]
-1500F Pt ]
-2000F sl ]
_2500 1 1 1 1 1

-5 -4 -3 -2 -1 0 1
X Location %10

Figure 18 Position of Aircraft with gains, K,=9.85,K=0,K=5, Ky=1.7

LAW 8: PROPORTIONAL, INTEGRAL, DERIVATIVE CONTROL

The cighth test case is proportional, integral, derivative control, the transfer function is as before

v K,VAS +K VAs+KVA
Uu

= 1+ K VA  +K VAs+KVA " Using all the gains from the previous analysis, Kq = 5, K; = 04, K; =
d P i

9.85, and Ky, = 1.7, is sufficient to test without any further analysis. The plots of the results are in the next section,
Observations.
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OBSERVATIONS

From the previous analysis of the possible control laws, 1 and 2 were unstable, the remaining, which are to be
tested thoroughly include:

Gains

Law K, K K, Ky
3 11 0 137 None
4 11 0.1 137 None
5 9.85 0 0 1.7
6 9.85 0.4 0 1.7
7 9.85 0 5 1.7
8 9.85 0.4 5 1.7

Table 3 Gains that Passed Initial Testing

Test Cases:

1.

Standard approach — This is the standard approach made most of the time. The aircraft has a heading
parallel to the runway and is past the outer marker.

Standard with crosswind from left — This approach is the same as the previous but wind is added from the
left. This may test if the wind is blowing the aircraft towards the centerline or away from the centetline.
Thirty knots of crosswind is the maximum wind a plane is expected to land in.

Standard with crosswind from right — This. approach is the same as the previous but wind is added from
the right. This may test if the wind is blowing the aircraft towards the centerline or away from the

centerline. Thirty knots of crosswind is the maximum wind a plane is expected to land in.

Procedure Turn — This approach is when the airplane approaches the runway from an angle of more than
90 degrees or less than 90 degrees.

Baseleg approach — The aircraft approaches from a 90-degree angle.

Pegged at middle marker — The aircraft is at the middle marker and about 2.5 degrees off the localizer
centerline,
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CONTROL WITHOUT FEEDBACK FROM HEADING

LAW 3: PROPORTIONAL, DERIVATIVE CONTROL

Standard approach, starting near the outer marker.

Position of Aircraft

2500 T T T T T
2000 T 1
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5001 e~ .
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Y Location "
-500f e .
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-1500} /,f” 1
-2000} P 1
-2500 * : : ; .
-5 -4 -3 -2 -1 0 1
X Location x10*

Figure 19 Position of Aircraft with gains, K=11,K=0,K,=137, Ky=None, and Test Case Standard, No Wind

Localizer Deviation
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Figure 20 Localizer, Roll, and Roll Rate with gains, K,=11,K;=0,K;=137, Ky=None, and Test Case Standard, No Wind

20



Law 3: Proportional, Derivative Control
Standard approach starting near the outer marker. The maximum crosswind speed a plane is expected to land in
is about 30 feet per second. All crosswind tests use this speed.

Position of Aircraft
2500 T T T T T

20001 S~
1500+ =
1000 =

5001 T~

Y Location
-5001 -

-1000} -
-1500} .-
-2000} .-

of —>—
_2500 1 1 1 1 1

- 0 1
X Location % 1 04

Figure 21 Position of Aircraft with gains, K,=11,K;=0,K,=137, Ky=None, and Test Case
Standard Approach from Right, with Crosswind from Right

Localizer Deviation
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Fignre 22 1.ocalizer, Roll, and Roll Rate with gains, K ,=11,K;=0,K;=137, Ky=None, and Test
Case Standard Approach from Right, with Crosswind from Right
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Law 3: Proportional, Derivative Control

Standard approach starting near the outer marker. Ground track is neatly the same as before but heading is

different.

Position of Aircraft
2500 T T T T T

2000 S~ 1
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Figure 23 Position of Aircraft with gains, K,=11,K;=0,K,=137, Ky=None, and Test Case
Standard Approach from Right, with Crosswind from Left

Localizer Deviation
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Fignre 24 1.ocalizer, Roll, and Roll Rate with gains, K ,=11,K;=0,K;=137, Ky=None, and
Test Case Standard Approach from Right, with Crosswind from Left
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Law 3: Proportional, Derivative Control
Localizer capture after a procedure turn, the normal flight procedure.

Position of Aircraft
20000 T T T T T T

15000

10000

Y Location
50001

-5000
X Location % 1 04

Figure 25 Position of Aircraft with gains, K,=11,K;=0,K,=137, Ky=None, and Test Case
Procedure Turn from Right, No Wind, Heading 45°
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Fignre 26 1.ocalizer, Roll, and Roll Rate with gains, K ,=11,K;=0,K;=137, Ky=None, and
Test Case Procedure Turn from Right, No Wind, Heading 45°
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Law 3: Proportional, Derivative Control
Baseleg approach an extreme case not normally used.

x10 Position of Aircraft
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Figure 27 Position of Aircraft with gains, K,=11,K;=0,K, =137, Ky=None, and Test
Case Baseleg from Right, No Wind, Heading 90°
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Fignre 28 1.ocalizer, Roll, and Roll Rate with gains, K ,=11,K;=0,K;=137, Ky=None, and
Test Case Baseleg from Right, No Wind, Heading 90°
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Law 3: Proportional, Derivative Control
This is the most severe case an aircraft would encounter, without having to abort the landing, localizer at limits
near middle marker.

Position of Aircraft

600

400

200

OF >

Y Location =

-200F - 1

-400} L ]

-600 . . . . .
-4000 -2000 0 2000 4000 6000 8000 10000
X Location

Figure 29 Position of Aircraft with gains, K,=11,K;=0,K,=137, Ky=None, and Test Case
Pegged ar Middle Marker, Stress Case, No Wind, Heading 1 0°
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Fignre 30 Localizer, Roll, and Roll Rate with gains, K ,=11,K;=0,K;=137, Ky=None, and Test
Case Pegged ar Middle Marker, Stress Case, No Wind, Heading 1 0 ©
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LAW 4: PROPORTIONAL, INTEGRAL, DERIVATIVE CONTROL

Standard approach starting near the outer marker.

Position of Aircraft
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Figure 31 Position of Aireraft with gains, K,=11,K=0.1,K,=137, K,=None, and Test Case Standard, No Wind
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Figure 32 Localizer, Roll, and Roll Rate with gains, K,=11,K=0.1,K,=137, Ky=None, and Test Case Standard, No Wind
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Law 4: Proportional, Integral, Derivative Control
Standard approach starting near the outer marker from the right with crosswind from the right.

Position of Aircraft
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Fignre 33 Position of Aircraft with gains, K,=11,K;=0.1,K;~=137, Ky=None, and Test Case Standard
Approach from Right, with Crosswind from Right

Localizer Deviation
1 T T T T

O;////rr_ﬁmﬁhh_ |
AL i
) 1 1 1 1

0 50 100 g, 150 200 250
10 : . . .

O -
10 i
20 50 100 150 200 250

5 : . Roll Rate . .

O L -

-5 i
10 - - - .

0 50 100 150 200 250
Time (sec)

Figure 34 Localizer, Roll, and Roll Rate with gains, Kp=11,Ki=0.1,Kd=137, Ky=None, and Test Case
Standard Approach from Right, with Crosswind from Right
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Law 4: Proportional, Integral, Derivative Control
Standard approach starting near the outer marker from the right with crosswind from the left. Ground track is
nearly the same as before but heading is different..
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Fignre 35 Position of Aircraft with gains, K,=11,K;=0.1,K;~137, Ky=None, and Test Case Standard
Approach from Right, with Crosswind from Left
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Figure 36 1.ocalizer, Roll, and Roll Rate with gains, K ,=11,K=0.1,K,=137, Ky=None, and
Test Case Standard Approach from Right, with Crosswind from Left
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Law 4: Proportional, Integral, Derivative Control
Localizer capture after a procedure turn, the normal flight procedure.

Position of Aircraft
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Fignre 37 Position of Aircraft with gains, K,=11, K=0.1, K=137, Ky=None, and Test Case
Procedure Turn from Right, No Wind, Heading 45°
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Figure 38 1.ocalizer, Roll, and Roll Rate with gains, K, =11, K=0.1, K/=137, Ky=None, and
Test Case Procedure Turn from Right, No Wind, Heading 45°
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Law 4: Proportional, Integral, Derivative Control
Baseleg approach an extreme case not normally used.

4

x10

10

Position of Aircraft

4t
Y Location

2_

Localizer Beam Limits

W i g

-6 -4 -2 0 2

X Location

x10'

Fignre 39 Position of Aircraft with gains, K,=11,K;=0.1,K;~=137, Ky=None, and Test Case Baseleg from
Right, No Wind, Heading 90°
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Figure 40 1ocalizer, Roll, and Roll Rate with gains, K, =11, K=0.1, K=137, Ky=None, and Test Case
Baseleg from Right, No Wind, Heading 90 °
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Law 4: Proportional, Integral, Derivative Control
This is the most severe case an aircraft would encounter, without having to abort the landing, localizer at limits
near middle marker.
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Figure 41 Position of Aircraft with gains, K,=11,K;=0.1,K;~137, Ky=None, and Test Case
Pegged ar Middle Marker, Stress Case, No Wind, Heading 10 °
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Figure 42 1.ocalizer, Roll, and Roll Rate with gains, K, =11, K=0.1, K;=137, Ky=None, and Test
Case Pegged at Middle Marker, Stress Case, No Wind, Heading 10 °
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CONTROL WITH FEEDBACK FROM HEADING

LAW 5: PROPORTIONAL CONTROL

Standard approach starting near the outer marker.
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Figure 43 Position of Aircraft with gains, K,=9.85,K=0,K,=0, Ky=1.7, and Test Case Standard, No Wind
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Figure 44 Localizer, Roll, and Roll Rate with gains, K,=9.85,K=0,K,=0, Ky,=1.7, and Test Case Standard, No Wind
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Law 5: Proportional Control
Standard approach starting near the outer marker from the left with crosswind from the right.
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Fignre 45 Position of Aircraft with gains, K,=9.85,K=0,K;=0, Ky=1.7, and Test Case Standard
Approach from Left, with Crosswind from Right
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Fignre 46 1.ocalizer, Roll, and Roll Rate with gains, K,=9.85,K;=0,K,=0, Ky=1.7, and Test Case
Standard Approach from Left, with Crosswind from Right
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Law 5: Proportional Control
Standard approach starting near the outer marker from the left with crosswind from the left.
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Fignre 47 Position of Aircraft with gains, K,=9.85,K=0,K;=0, Ky=1.7, and Test Case Standard
Approach from Left, with Crosswind from Left
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Fignre 48 1.ocalizer, Roll, and Roll Rate with gains, K,=9.85,K;=0,K,=0, Ky=1.7, and Test Case

Standard Approach from Left, with Crosswind from Left
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Law 5: Proportional Control
Localizer capture after a procedure turn, the normal flight procedure.
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Fignre 49 Position of Aircraft with gains, K,=9.85,K=0,K;=0, Ky=1.7,, and Test Case Procedure Turn
from left, No Wind, Heading 45 °
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Fignre 50 1.ocalizer, Roll, and Roll Rate with gains, K,=9.85,K;=0,K,=0, Ky=1.7, and Test Case
Procedure Turn from Left, No Wind, Heading 45°
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Law 5: Proportional Control
Baseleg approach an extreme case not normally used.
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Fignre 51 Position of Aircraft with gains, K,=9.85,K=0,K;=0, Ky=1.7, and Test Case Baseleg from Left,
No Wind, Heading 90°
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Fignre 52 1.ocalizer, Roll, and Roll Rate with gains, K,=9.85,K;=0,K,=0, Ky=1.7, and Test Case Baseleg
from left, No Wind, Heading 90°
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Law 5: Proportional Control
This is the most severe case an aircraft would encounter, without having to abort the landing, localizer at limits
near middle marker.
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Fignre 53 Position of Aircraft with gains, K,=9.85,K=0,K;=0, Ky=1.7, and Test Case Pegged at Middle
Marker, Stress Case, No Wind, Heading 10°

Localizer Deviation

4 T T T
2 - 4
O - 4
2 5 10 15 20
5 . Roll_' .
O /\_/\ i
0, 5 10 15 20
10 . Roll Rate :
_20 1 1 1
5 10 15 20
Time (sec)

Fignre 54 1.ocalizer, Roll, and Roll Rate with gains, K,=9.85,K;=0,K,=0, Ky=1.7,, and Test Case Pegged
at Middle Marker, Stress Case, No Wind, Heading 10°
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LAW 6: PROPORTIONAL, INTEGRAL CONTROL

Standard approach starting near the outer marker.
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Figure 55 Position of Aircraft with gains, K,=9.85,K=0.4,K=0, K,=1.7, and Test Case Standard, No Wind
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Figure 56 Localizer, Roll, and Roll Rate with gains, K,=9.85,K=04,K=0, K,=1.7, and Test Case Standard, No Wind
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Law 6: Proportional, Integral Control
Standard approach starting near the outer marker from the left with crosswind from the right
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Figure 57 Position of Aircraft with gains, K,=9.85,K=0.4,K,=0, Ky=1.7, and Test Case Standard
Approach from Left, with Crosswind from Right
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Figure 58 1.ocalizer, Roll, and Roll Rate with gains, K ,=9.85,K;=0.4,K;=0, Ky=1.7, and Test Case
Standard Approach from Left, with Crosswind from Right
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Law 6: Proportional, Integral Control

Standard approach starting near the outer marker from the left with crosswind from the left
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Figure 59 Position of Aircraft with gains, K,=9.85,K=0.4,K,=0, Ky=1.7, and Test Case Standard

Localizer Deviation

Approach from Left, with Crosswind from Left
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Figure 60 1ocalizer, Roll, and Roll Rate with gains, K ,=9.85,K;=0.4,K;=0, Ky=1.7, and Test Case
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Law 6: Proportional, Integral Control
Localizer capture after a procedure turn, the normal flight procedure.

Position of Aircraft
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Figure 61 Position of Aircraft with gains, K,=9.85,K=04,K,=0, Ky=1.7,, and Test Case Procedure
Turn from Left, No Wind, Heading 45°
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Figure 62 1.ocalizer, Roll, and Roll Rate with gains, K ,=9.85,K;=0.4,K;=0, Ky=1.7, and Test Case
Procedure Turn from Left, No Wind, Heading 45°
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Law 6: Proportional, Integral Control
Baseleg approach an extreme case not normally used.
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Figure 63 Position of Aircraft with gains, K,=9.85,K=04,K,=0, Ky=1.7, and Test Case Baseleg from
Left, No Wind, Heading 90°
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Figure 64 1.ocalizer, Roll, and Roll Rate with gains, K ,=9.85,K;=0.4,K;=0, Ky=1.7, and Test Case
Baseleg from left, No Wind, Heading 90°
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Law 6: Proportional, Integral Control
This is the most severe case an aircraft would encounter, without having to abort the landing, localizer at limits
near middle marker.

Position of Aircraft
600

400

200

Y Locatioh
o -

-2001

-400}

_600 1 1 1 1 1
-4000 -2000 0 2000 4000 6000 8000 10000
X Location

Fignre 65 Position of Aireraft with gains, K,=9.85,K=04,K,=0, Ky=1.7, and Test Case Pegged at
Middle Marker, Stress Case, No Wind, Heading 10°
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Figure 66 1.ocalizer, Roll, and Roll Rate with gains, K ,=9.85,K;=0.4,K;=0, Ky=1.7, and Test Case
Pegged ar Middle Marker, Stress Case, No Wind, Heading 10°
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LAW 7: PROPORTIONAL, DERIVATIVE

Standard approach starting near the outer marker.
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Figure 67 Position of Aircraft with gains, K=9.85,K=0,K,=5, K,=1.7, and Test Case Standard, No

Wind
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Figure 68 Localizer, Roll, and Roll Rate with gains, K,=9.85,K=0,K,=5, K,=1.7, and Test Case

Standard, No Wind
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Law 7: Proportional, Derivative Control
Standard approach starting near the outer marker from the left with crosswind from the right
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Figure 69 Position of Aircraft with gains, K,=9.85,K=0,K;=5, Ky=1.7, and Test Case Standard
Approach from Lefl, with Crosswind from Right
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Fignre 70 Localizer, Roll, and Roll Rate with gains, K ,=9.85,K;=0,K,=5, Ky=1.7, and Test Case

Standard Approach from Left, with Crosswind from Right
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Law 7: Proportional, Derivative Control
Standard approach starting near the outer marker from the left with crosswind from the left
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Figure 71 Position of Aircraft with gains, K,=9.85,K=0,K;=5, Ky=1.7, and Test Case Standard
Approach from Left, with Crosswind from Left
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Fignre 72 1.ocalizer, Roll, and Roll Rate with gains, K ,=9.85,K;=0,K,=5, Ky=1.7, and Test Case
Standard Approach from Left, with Crosswind from Left
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Law 7: Proportional, Derivative Control
Localizer capture after a procedure turn, the normal flight procedure.
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Figure 73 Position of Aircraft with gains, K,=9.85,K=0,K;=5, Ky=1.7, and Test Case Procedure Turn
from Left, No Wind, Heading 45°

Localizer Deviation

4 T T T T T
2f \ -
o 1 1 1 1 1
0 50 100 150 200 250 300
20 T T Roll T T T

fl\)
(@] (@]

T

1

_40 1 1 1 1
10O 5.0 1(.)0 Roll Rglfeo 2(.)0 2.50 300
0 W
A0t 4
_20 1 1 1 1 1
0 50 100 150 200 250 300
Time (sec)

Fignre 74 1.ocalizer, Roll, and Roll Rate with gains, K ,=9.85,K;=0,K,=5, Ky=1.7, and Test Case
Procedure Turn from Left, No Wind, Heading 45°
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Law 7: Proportional, Derivative Control
Baseleg approach an extreme case not normally used.
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Figure 75 Position of Aircraft with gains, K,=9.85,K=0,K;=5, Ky=1.7, and Test Case Baseleg from
Left, No Wind, Heading 90°
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Figure 76 1.ocalizer, Roll, and Roll Rate with gains, K ,=9.85,K;=0,K,=5, Ky=1.7, and Test Case Baseleg
from Left, No Wind, Heading 90°
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Law 7: Proportional, Derivative Control
This is the most severe case an aircraft would encounter, without having to abort the landing, localizer at limits
near middle marker.
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Figure 77 Position of Aircraft with gains, K,=9.85,K=0,K;=5, Ky=1.7, and Test Case Pegged at Middle
Marker, Stress Case, No Wind, Heading 10°
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Fignre 78 1ocalizer, Roll, and Roll Rate with gains, K ,=9.85,K;=0,K,=5, Ky=1.7, and Test Case Pegged
at Middle Marker, Stress Case, No Wind, Heading 10°
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LAW 8: PROPORTIONAL, INTEGRAL, DERIVATIVE

Standard approach starting near the outer marker.
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Figure 79 Position of Aircraft with gains, K=9.85,K=04,K;=5, Ky=1.7, and Test Case Standard, No
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Figure 80 Localizer, Roll, and Roll Rate with gains, K,.=9.85,K=04,K=5, K,=1.7, and Test Case

Standard, No Wind
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Law 8: Proportional, Integral, Derivative Control
Standard approach starting near the outer marker from the right with crosswind from the right
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Figure 81 Position of Aircraft with gains, K,=9.85,K=04,K,=5, Ky=1.7, and Test Case Standard
Approach from Right, with Crosswind from Right
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Figure 82 1.ocalizer, Roll, and Roll Rate with gains, K ,=9.85,K;=0.4,K;=5, Ky=1.7, and Test Case
Standard Approach from Right, with Crosswind from Right
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Law 8: Proportional, Integral, Derivative Control
Standard approach starting near the outer marker from the right with crosswind from the left

Position of Aircraft
2500 T T T T :

2000

1500

1000

500

Y Location
-500t

-1000

-1500

-2000

_2500 1 1 1 1 1
-5
X Location X 104

Figure 83 Position of Aircraft with gains, K,=9.85,K=04,K,=5, Ky=1.7, and Test Case Standard
Approach from Right, with Crosswind from Left
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Figure 84 1.ocalizer, Roll, and Roll Rate with gains, K ,=9.85,K;=0.4,K;=5, Ky=1.7, and Test Case
Standard Approach from Right, with Crosswind from Left
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Law 8: Proportional, Integral, Derivative Control

Localizer capture after a procedure turn, the normal flight procedure.
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Figure 85 Position of Aircraft with gains, K,=9.85,K=04,K,=5, Ky=1.7, and Test Case Procedure Turn

from Right, No Wind, Heading 45 °
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Figure 86 1.ocalizer, Roll, and Roll Rate with gains, K ,=9.85,K;=0.4,K;=5, Ky=1.7, and Test Case

Procedure Turn from Right, No Wind, Heading 45°
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Law 8: Proportional, Integral, Derivative Control
Baseleg approach an extreme case not normally used.
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Fignre 87 Position of Aircraft with gains, K,=9.85,K=04,K,=5, Ky=1.7, and Test Case Baseleg from
Right, No Wind, Heading 90°
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Figure 88 1.ocalizer, Roll, and Roll Rate with gains, K ,=9.85,K;=0.4,K;=5, Ky=1.7, and Test Case
Baseleg from Right, No Wind, Heading 90°
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Law 8: Proportional, Integral, Derivative Control
This is the most severe case an aircraft would encounter, without having to abort the landing, localizer at limits
near middle marker.
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Fignre 89 Position of Aircraft with gains, K,=9.85,K=04,K,=5, Ky=1.7, and Test Case Pegged at
Middle Marker, Stress Case, No Wind, Heading 10°
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Figure 90 1.ocalizer, Roll, and Roll Rate with gains, K ,=9.85,K;=0.4,K;=5, Ky=1.7, and Test Case
Pegged ar Middle Marker, Stress Case, No Wind, Heading 10°
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ANALYSIS AND INTERPRETATION OF DATA

One of the main objectives was to meet the criteria of developing a lateral flight director that may aid while
landing in a stress case, pegged at the middle marker, while also meeting the minimum criteria. ‘The criteria includes

Is the system stable?

Is the system too oscillatory?

Does plane make it to centerline in time to land, within the 50-foot range?
Is the overshoot less than 20%?

The following is a table of all the control laws that are compared for easy reference

Control Law Feedback
LOC Deviation Heading Roll

1 P None P

2 PI None P

3 PD None P

4 PID None P

5 P P P

6 PI P P

7 PD P P

8 PID P P

Current Law P P PID

Table 4 Control Iaws
Summary of results are in the following table:
Tests
Control Law || Standard Standard Standard Procedure Baseleg Pegged Reason
Crosswind Crosswind Turn No wind at  Middle
from left from right Marker

1 Failed Failed Failed Failed Failed Failed Unstable
2 Failed Failed Failed Failed Failed Failed Unstable
3 Passed Passed Passed Failed, 32% | Failed osc. Passed Overshoot
4 Failed, 33% | Failed, 33% | Failed, 33% | Failed, 40% | Failed osc Failed Overshoot
5 Passed Passed Passed Passed Passed Passed Passed
6 Failed 43% | Failed 43% | Failed 43% | Failed 34% | Failed 32% | Failed Overshoot
7 Passed Passed Passed Passed Passed Passed Passed
8 Failed 53% | Failed 53% | Failed 53% | Failed 40% | Failed 40% | Failed Overshoot
current law |] Passed Passed Passed Passed Passed Failed Landing

Table 5 Test Cases Results

56




Roll angle feedback is required for all control laws. The roll angle control law designed, which is used for all
tested control laws, is proportional. This is derived from the assumption that the pilot closes the inner loop.
Supposing the pilot flies by referencing the flight director instrument, then the roll command will be proportional to
roll error. The amount of roll rate activity on the plots indicates the pilot’s workload in following the flight director.

Control laws 1, 2, 3, 4, 6, and 8 were rejected for several reasons. Control law 1 and 2 failed the initial design,
because of the instability in the systems neither one could be fully designed. Control law 1 is neutrally stable with a
damping ratio of zero and thus, the system oscillates continuously regardless of the gains used. Control law 2 is
unstable for any gains as indicated in the root locus plots. Control law 3 initially passed the standard approach, but
failed the procedure turn with an overshoot of 32%. Figure 95 is a magnified version of the localizer deviation.
The overshoot is 0.8/2.5=32%. Adding an integrator on control laws 4, 6, and 8 added unnecessary overshoot.
Control laws 4,6, and 8 failed to meet the criteria for the stress case at the middle marker.

1 Localizer Deviation
T T T

0.5r 1

-0.51 1
Degree

0 50 100 150 200 250 300

Time

Figure 91 Control Law 3, Procedure Turn, and Localizer Deviation

Based on the gains derived, only control law 5 and control law 7 pass all tests, while the current law fails. The
test results of the current control law are listed in appendix A. The current law is smooth but very sluggish, and
cannot recover if pegged at the middle marker. It failed the stressed case because at touchdown its heading is not
parallel with the runway, which indicates that the plane is not line up with centerline and would land off the runway
at an angle to the runway. The plane would be approximately 59 feet off centerline at touchdown, which exceeds
the safe landing criteria. Control law 5 and 7 are almost identical in every way except for the pegged at the middle
marker. They provide a smooth transition upon approach to the centerline. At the centerline, control law 5 doesn’t
reach steady state before touchdown, as opposed to control law 7, which gets there much quicker and stahilizes
before touchdown. For safety reasons control law 7 should be chosen. If the pilot preferred not to do too much
work then the current control law can meet his needs but if wind blows him off course then the pilot cannot
recover the centerline alignment of his aircraft. Control law 7 would meet this need.
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CONCLUSIONS

From the eight control laws tested, only control law 7 with feedback from roll, heading and localizer deviation
met all criteria successfully. The goal of this study was to determine a system that is less complicated than the
current system and successfully performs the middle marker stress test. Given this goal, gains were chosen to be
static rather than dynamic which results in a simpler controller. In addition, using a heuristic method for designing
the control laws, the gains were chosen based on analysis, but were not changed to be able to test for optimal
control. The research was conducted primarily to test different control laws as opposed to finding the optimal one.
Control law 7 is less complicated than the current law and this implies less hardware complexity. Even though
control law 7 passed all tests presented in this paper, further tests and investigation should be done before installing
the control law on a Boeing 757 aircraft. Other parameters that may be included in the future tests include noise in
the localizer signal, turbulence, and variable winds.
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APPENDIX A

CURRENT LAW

Standard approach starting near the outer marker.
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Figure 92 Current Law, Standard Approach from Right, and No Wind

Localizer Deviation

50 I:‘0”100 150 200

-5 1 I 1
5O 5.0 Roll Rate1?0 1?0 200
0 r‘ i
5t 4
-10 ; L L
0 50 100 150 200
Time (sec)

Figure 93 Current Law, Standard Approach from Right, and No Wind



Standard approach starting near the outer marker from the left with crosswind from the right.
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Figure 94 Current Law, Standard Approach from Left, with Crosswind from Right
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Figure 95 Current Law, Standard Approach from Left, with Crosswind from Right

60



Standard approach starting near the outer marker from the left with crosswind from the left.
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Figure 96 Current Law, Standard Approach from Left, with Crosswind from Left
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Figure 97 Current Law, Standard Approach from Left, with Crosswind from Left
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Localizer capture after a procedure turn, the normal flight procedure.
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Figure 98 Current Law, Procedure Turn from the Right, No Wind, Heading 45°
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Figure 99 Current Law, Procedure Turn from the Right, No Wind, Heading 45°
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Baseleg approach an extreme case not normally used.
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Figure 100 Current Law, Baseleg from Right, No Wind, and Heading 90°
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Figure 101 Current Law, Baseleg from Right, No Wind, and Heading 90°
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This is the most severe case an aircraft would encounter, without having to abort the landing, localizer at limits
near middle marker.
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Figure 102 Current Law, Pegged at Middle Marker, Stress Case
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Figure 103 Current Law, Pegged at Middle Marker, Stress Case
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